learn about health, what exactly is health? Learn about healthy living, adopt healthy attitudes, and live a healthy lifestyle. Study online about health and learn the links between mental, personal and chemical health.
Humans on a Cafeteria Diet
Read more »
Malocclusion: Disease of Civilization
Price published the first edition of his book in 1939. Fortunately, Nutrition and Physical Degeneration wasn't the last word on the matter. Anthropologists and archaeologists have been extending Price's findings throughout the 20th century. My favorite is Dr. Robert S. Corruccini, currently a professor of anthropology at Southern Illinois University. He published a landmark paper in 1984 titled "An Epidemiologic Transition in Dental Occlusion in World Populations" that will be our starting point for a discussion of how diet and lifestyle factors affect the development of the teeth, skull and jaw (Am J. Orthod. 86(5):419)*.
First, some background. The word occlusion refers to the manner in which the top and bottom sets of teeth come together, determined in part by the alignment between the upper jaw (maxilla) and lower jaw (mandible). There are three general categories:
- Class I occlusion: considered "ideal". The bottom incisors (front teeth) fit just behind the top incisors.
- Class II occlusion: "overbite." The bottom incisors are too far behind the top incisors. The mandible may appear small.
- Class III occlusion: "underbite." The bottom incisors are beyond the top incisors. The mandible protrudes.
Over the course of the next several posts, I'll give an overview of the extensive literature showing that hunter-gatherers past and present have excellent occlusion, subsistence agriculturalists generally have good occlusion, and the adoption of modern foodways directly causes the crooked teeth, narrow arches and/or crowded third molars (wisdom teeth) that affect the majority of people in industrialized nations. I believe this process also affects the development of the rest of the skull, including the face and sinuses.
In his 1984 paper, Dr. Corruccini reviewed data from a number of cultures whose occlusion has been studied in detail. Most of these cultures were observed by Dr. Corruccini personally. He compared two sets of cultures: those that adhere to a traditional style of life and those that have adopted industrial foodways. For several of the cultures he studied, he compared it to another that was genetically similar. For example, the older generation of Pima indians vs. the younger generation, and rural vs. urban Punjabis. He also included data from archaeological sites and nonhuman primates. Wild animals, including nonhuman primates, almost invariably show perfect occlusion.
The last graph in the paper is the most telling. He compiled all the occlusion data into a single number called the "treatment priority index" (TPI). This is a number that represents the overall need for orthodontic treatment. A TPI of 4 or greater indicates malocclusion (the cutoff point is subjective and depends somewhat on aesthetic considerations). Here's the graph:

The best occlusion was in the New Britain sample, a precontact Melanesian hunter-gatherer group studied from archaeological remains. The next best occlusion was in the Libben and Dickson groups, who were early Native American agriculturalists. The Pima represent the older generation of Native Americans that was raised on a somewhat traditional agricultural diet, vs. the younger generation raised on processed reservation foods. The Chinese samples are immigrants and their descendants in Liverpool. The Punjabis represent urban vs. rural youths in Northern India. The Kentucky samples represent a traditionally-living Appalachian community, older generation vs. processed food-eating offspring. The "early black" and "black youths" samples represent older and younger generations of African-Americans in the Cleveland and St. Louis area. The "white parents/youths" sample represents different generations of American Caucasians.
The point is clear: there's something about industrialization that causes malocclusion. It's not genetic; it's a result of changes in diet and/or lifestyle. A "disease of civilization". I use that phrase loosely, because malocclusion isn't really a disease, and some cultures that qualify as civilizations retain traditional foodways and relatively good teeth. Nevertheless, it's a time-honored phrase that encompasses the wide array of health problems that occur when humans stray too far from their ecological niche. I'm going to let Dr. Corruccini wrap this post up for me:
I assert that these results serve to modify two widespread generalizations: that imperfect occlusion is not necessarily abnormal, and that prevalence of malocclusion is genetically controlled so that preventive therapy in the strict sense is not possible. Cross-cultural data dispel the notion that considerable occlusal variation [malocclusion] is inevitable or normal. Rather, it is an aberrancy of modern urbanized populations. Furthermore, the transition from predominantly good to predominantly bad occlusion repeatedly occurs within one or two generations' time in these (and other) populations, weakening arguments that explain high malocclusion prevalence genetically.
* This paper is worth reading if you get the chance. It should have been a seminal paper in the field of preventive orthodontics, which could have largely replaced conventional orthodontics by now. Dr. Corruccini is the clearest thinker on this subject I've encountered so far.
A Little Tidbit
Similar to heart disease and diabetes which are "diseases of civilization" or "Western diseases" (Trowell and Burkitt, 1981) that have attained high prevalence in urban society because of environmental factors rather than "genetic deterioration," an epidemiological transition (Omran, 1971) in occlusal health accompanies urbanization.In other words, the reason observational studies in affluent nations haven't been able to get to the bottom of dental/orthodontic problems and chronic disease is that everyone in their study population is doing the same thing! There isn't enough variability in the diets and lifestyles of modern populations to be able to determine what's causing the problem. So we study the genetics of problems that are not genetic in origin, and overestimate genetic contributions because we're studying populations whose diet and lifestyle are homogeneous. It's a wild goose chase.
Western society has completely crossed this transition and now exists in a state of industrially buffered environmental homogeneity. The relatively constant environment both raises genetic variance estimates (since environmental variance is lessened) and renders epidemiological surveys largely meaningless because etiological factors are largely uniform. Nevertheless most occlusal epidemiology and heritability surveys are conducted in this population rather than in developing countries currently traversing the epidemiological transition.
That's why you have to study modernizing populations that are transitioning from good to poor health, which is exactly what Dr. Weston Price and many others have done. Only then can you see the true, non-genetic, nature of the problem.
Water for the Pima
The trouble all started when their irrigation waters were diverted upstream in the late 19th century. Their traditional diet of corn, beans, squash, fish, game meats and gathered plant foods became impossible. They became dependent on government food programs, which provided them with white flour, sugar, lard and canned goods. Now they are the subjects of scientific research because of their staggering health problems.
I'm happy to report that after more than 30 years of activism, lawsuits and negotiation, the Pima and neighboring tribes have reached an agreement with the federal government that will restore a portion of their original water. Of the 2 million acre-feet of water the Pima were estimated to have used since before the 16th century, the settlement will restore 653,500. An acre-foot is approximately the personal water use of one household. The settlement also provides federal funds for reconstructing old irrigation canals.
Now we will see how the Pima will use it. Will they return to an agricultural lifestyle, perhaps with the advantages of modern technology? Or will they lease the water rights for money and continue to live off Western foods? Perhaps some of both. They are definitely aware that Western food is causing their health problems, and that they could regain their health by eating traditional foods. However, white flour "fry bread", sugar and canned meat have been around for so long they are also a cultural tradition at this point. Only time will tell which path they choose.
Two Things that Get on My Nerves, Part I
The thrifty gene hypothesis is the darling of many obesity researchers. It was proposed in 1962 by the geneticist James V. Neel to explain the high rates of obesity in modern populations, particularly modernizing American Indians. It states that our species evolved under conditions of frequent starvation, so we're designed to store every available calorie. In today's world of food abundance, our bodies continue to be thrifty and that's why we're fat. You practically can't read a paper on overweight without seeing an obligatory nod to the thrifty gene hypothesis. The only problem is, it doesn't make much sense.
The assumption that hunter-gatherers and non-industrial agriculturalists lived under chronic calorie deprivation isn't well supported. The anthropological evidence indicates that most hunter-gatherers had abundant food, most of the time. They did have fluctuations in energy balance, but the majority of the time they had access to more calories than they needed. Yet they were not fat.
The Kitavans are a good example. They are a horticultural society that eats virtually no grains or processed food. In Dr. Staffan Lindeberg's studies, he has determined that overweight is virtually nonexistent among them, despite an abundant food supply.
The cause of obesity is not the availability of excess calories, it's the deregulation of the bodyweight homeostasis system. We have a very sophisticated set of feedback loops that "try" to maintain a healthy weight. It's composed of hormones (leptin, insulin, etc.), certain brain regions, and many other elements, known and unknown. These feedback loops influence what the body does with calories, as well as feeding behaviors. When you throw a wrench in the gears with a lifestyle that is unnatural to the human metabolism, you deregulate the system so that it no longer maintains an appropriate "set-point".
Here's what Neel had to say about the thrifty gene hypothesis in 1982 (excerpts from Good Calories, Bad Calories):
The data on which that (rather soft) hypothesis was based has now largely collapsed.And what does he think causes overweight in American Indians now?
The composition of the diet, and more specifically the use of highly refined carbohydrates.RIP, thrifty gene.
Lessons From the Pima Indians

Things were very different for them before 1539, when the Spanish first made contact. They lived on an agricultural diet of beans, corn and squash, with wild fish, game meat and plants. As with most native people, they were thin and healthy while on their traditional diet.
In 1859, the Pima were restricted to a small fraction of their original land along the Gila river, the Pima Reservation. In 1866, settlers began arriving in the region and diverting the Gila river upstream of the reservation for their own agriculture. In 1869, the river went dry for the first time. 1886 was the last year any water flowed to the Pima Reservation in the Gila river.
The Pima had no way to obtain water, and no way to grow crops. Their once productive subsistence economy ground to a halt. Famine ensued for 40 desperate years. The Pima cut down their extensive mesquite forests to sell for food and water. Eventually, after public outcry, uncle Sam stepped in.
The government provided the Pima with subsidized "food": white flour, sugar, partially hydrogenated lard, and canned goods. They promptly became diabetic and overweight, and have remained that way ever since.
The Pima are poster children for mainstream nutrition researchers in the US for several reasons. First of all, their pre-contact diet was probably fairly low in fat, and researchers love to point out that they now eat more fat (comparable to the average American diet). Another reason is that there's another group of Pima in Mexico who still live on a relatively traditional diet and are much healthier. They are genetically very similar, supporting the idea that it's the lifestyle of the American Pima that's causing their problems. The third reason is that the Mexican Pima exercise more than the Arizona Pima and eat a bit less.
I of course agree with the conclusion that their lifestyle is behind their problems; that's pretty obvious. I think most Pima know it too. If they got their water back, maybe things would be different for them.
However, the focus on macronutrients sometimes obscures the fact that the modern Pima diet is pure crap. It's mostly processed food with a low nutrient density. It also contains the two biggest destroyers of indigenous health: white flour and sugar. There are numerous examples of cultures going from a high-fat diet to a lower-fat "reservation food" diet and suffering the same fate: the Inuit of Alaska, the Maasai and Samburu of Kenya, tribes in the Pacific Northwestern US and Canada, certain Aboriginal groups, and more. What do they all have in common? White flour, sugar and other processed food.
The exercise thing is somewhat questionable as well. True, Mexican Pima exercise 2.5 times more than Arizona Pima, but the Arizona Pima still exercise much more than the average American! Women clock in at 3.1 hours a week, while men come in at a whopping 12.1 hours a week! I am a bike commuter and weight lifter, and even I don't exercise that much. So forgive me if I'm a little skeptical of the idea that they aren't exercising enough to keep the weight off.
The history of the Pima is a heart-wrenching story that has been repeated hundreds, perhaps thousands of times all over the world. Europeans bring in white flour, sugar and other processed food, it destroys a native populations' health, and then researchers either act like they don't understand why it happened, or give unsatisfying explanations for it.
The Pima are canaries in the coal mine, and we can learn a lot from them. Their health problems resemble those of other poor Americans (and wealthier ones also, to a lesser extent). This is because they are both eating similar types of things. The problem is creeping into society at large, however, as we rely more and more on processed wheat, corn, soy and sugar, and less on wholesome food. Obesity in the US has doubled in the past 30 years, and childhood obesity has tripled. Diabetes is following suit. Life expectancy has begun to diminish in some (poor) parts of the country. Meanwhile, our diet is looking increasingly like Pima reservation food. It's time to learn a lesson from their tragedy.
Genetics and Disease
There is a lot of confusion surrounding the role of genetics in health. It seems like every day the media have a new story about gene X or Y 'causing' obesity, diabetes or heart disease. There are some diseases that are strongly and clearly linked to a gene, such as the disease I study: spinocerebellar ataxia type 7. I do not believe that genetics are the cause of more than a slim minority of health problems however. Part of this is a semantic issue. How do you define the word 'cause'? It's a difficult question, but I'll give you an example of my reasoning and then we'll come back to it.
A classic and thoroughly studied example of genetic factors in disease can be found in the Pima indians of Arizona. Currently, this population eats a version of the American diet, high in refined and processed foods. It also has the highest prevalence of type II diabetes of any population on earth (much higher than the US average), and a very high rate of obesity. One viewpoint is that these people are genetically susceptible to obesity and diabetes, and thus their genes are the cause of their health problems.
However, if you walk across the national border to Mexico, you'll find another group of Pima indians. This population is genetically very similar to the Arizona Pima except they have low rates of obesity and diabetes. They eat a healthier, whole-foods, agriculture-based diet. Furthermore, 200 years ago, the Arizona Pima were healthy as well. So what's the cause of disease here? Strictly speaking, it's both genetics and lifestyle. Both of these factors are necessary for the health problems of the Arizona Pima. However, I think it's more helpful to think of lifestyle as the cause of disease, since that's the factor that changed.
The Pima are a useful analogy for the world in general. They are an extreme example of what has happened to many if not all modern societies. Thus, when we talk about the 'obesity gene' or the 'heart disease gene', it's misleading. It's only the 'obesity gene' in the context of a lifestyle to which we are not genetically adapted.
I do not believe that over half of paleolithic humans were overweight, or that 20% had serious blood glucose imbalances. In fact, studies of remaining populations living naturally and traditionally have shown that they are typically much healthier than industrialized humans. Yet here we are in the US, carrying the very same genes as our ancestors, sick as dogs. That's not all though: we're actually getting sicker. Obesity, diabetes, allergies and many other problems are on the rise, despite the fact that our genes haven't changed.
I conclude that genetics are only rarely the cause of disease, and that the vast majority of health problems in the US are lifestyle-related. Studies into the genetic factors that predispose us to common health problems are interesting, but they're a distraction from the real problems and the real solutions that are staring us in the face. These solutions are to promote a healthy diet, exercise, and effective stress management.