The Coronary Heart Disease Epidemic: Possible Culprits Part I

In the last post, I reviewed two studies that suggested heart attacks were rare in the U.K. until the 1920s -1930s. In this post, I'll be discussing some of the diet and lifestyle factors that preceded and associated with the coronary heart disease epidemic in the U.K and U.S. I've cherry picked factors that I believe could have played a causal role. Many things changed during that time period, and I don't want to give the impression that I have "the answer". I'm simply presenting ideas for thought and discussion.

First on the list: sugar. Here's a graph of refined sugar consumption in the U.K. from 1815 to 1955, from the book The Saccharine Disease, by Dr. T. L. Cleave. Sugar consumption increased dramatically in the U.K. over this time period, reaching near-modern levels by the turn of the century, and continuing to increase after that except during the wars: Here's a graph of total sweetener consumption in the U.S. from 1909 to 2005 (source: USDA food supply database). Between 1909 and 1922, sweetener consumption increased by 40%:

If we assume a 10 to 20 year lag period, sugar is well placed to play a role in the CHD epidemic. Sugar is easy to pick on. An excess causes a number of detrimental changes in animal models and human subjects, including fatty liver, the metabolic syndrome, and small, oxidized low-density lipoprotein particles (LDL). Small and oxidized LDL associate strongly with cardiovascular disease risk and may be involved in causing it. These effects seem to be mostly attributable to the fructose portion of sugar, which is 50% of table sugar (sucrose), about 50% of most naturally sweet foods, and 55% of the most common form of high-fructose corn syrup. That explains why starches, which break down into glucose (another type of sugar), don't have the same negative effects as table sugar and HFCS.

Hydrogenated fat is the next suspect. I don't have any graphs to present, because no one has systematically tracked hydrogenated fat consumption in the U.S. or U.K. to my knowledge. However, it was first marketed in the U.S. by Procter & Gamble under the brand name Crisco in 1911. Crisco stands for "crystallized cottonseed oil", and involves taking an industrial waste oil (from cotton seeds) and chemically treating it using high temperature, a nickel catalyst and hydrogen gas (see this post for more information). Hydrogenated fats for human consumption hit markets in the U.K. around 1920. Here's what Dr. Robert Finlayson had to say about margarine in his paper "Ischaemic Heart Disease, Aortic Aneurysms, and Atherosclerosis in the City of London, 1868-1982":
...between 1909-13 and 1924-28, margarine consumption showed the highest percentage increase, whilst that of eggs only increased slightly and that of butter remained unchanged. Between 1928 and 1934, margarine consumption fell by one-third, while butter consumption increased by 57 percent: and increase that coincided with a fall of 48 percent in its price. Subsequently, margarine sales have burgeoned, and if one is correct in stating that the coronary heart disease epidemic started in the second decade of this century, then the concept of hydrogenated margarines as an important aetiological factor, so strongly advocated by Martin, may merit more consideration than hitherto.
Partially hydrogenated oils contain
trans fat, which is truly new to the human diet, with the exception of small amounts found in ruminant fats including butter. But for the most part, natural trans fats are not the same as industrial trans fats, and in fact some of them, such as conjugated linoleic acid (CLA), may be beneficial. To my knowledge, no one has discovered health benefits of industrial trans fats. To the contrary, compared to butter, they shrink LDL size. They also inhibit enzymes that the body uses to make a diverse class of signaling compounds known as eicosanoids. Trans fat consumption associates very strongly with the risk of heart attack in observational studies. Which is ironic, because hydrogenated fats were originally marketed as a healthier alternative to animal fats. The Center for Science in the Public Interest shamed McDonald's into switching the beef tallow in their deep friers for hydrogenated vegetable fats in the 1990s. In 2009, even the staunchest opponents of animal fats have to admit that they're healthier than hydrogenated fat.

The next factor is vitamin D. When the industrial revolution became widespread in the late 19th century, people moved into crowded, polluted cities and vitamin D deficiency became rampant. Rickets was a scourge that affected more than half of children in some places. Dr. Edward Mellanby discovered that it's caused by severe vitamin D deficiency, milk was fortified with vitamin D2, and rickets was all but eliminated. However, it only takes a very small amount of vitamin D to avoid rickets, an amount that will not contribute significantly to optimum vitamin D status. Vitamin D modulates the body's inflammatory response, it's ability to resist calcium deposition in the arteries, and seems to be important for so many things I had to include it.

The rise of cigarettes was a major change that probably contributed massively to the CHD epidemic. They were introduced just after the turn of the century in the U.S. and U.K., and rapidly became fashionable (source):
If you look at the second to last graph from the previous post, you can see that there's a striking correspondence between cigarette consumption and CHD deaths in the U.K. In fact, if you moved the line representing cigarette consumption to the right by about 20 years, it would overlap almost perfectly with CHD deaths. The risk of heart attack is so strongly associated with smoking in observational studies that even I believe it probably represents a causal relationship. There's no doubt in my mind that smoking cigarettes contributes to the risk of heart attack and various other health problems.

Smoking is a powerful factor, but it doesn't explain everything. How is it that the Kitavans of Papua New Guinea, more than 3/4 of whom smoke cigarettes, have an undetectable incidence of heart attack and stroke? Why do the French and the Japanese, who smoke like chimneys (at least until recently), have the two lowest heart attack death rates of all the affluent nations? There's clearly another factor involved that trumps cigarette smoke. I have a guess, which I'll expand on in the next few posts.