Saturated Fat and Insulin Sensitivity, Again

A new study was recently published exploring the effect of diet composition on insulin sensitivity and other factors in humans (1). 29 men with metabolic syndrome-- including abdominal obesity, low HDL, high blood pressure, high triglycerides, and high fasting glucose-- were fed one of four diets for 12 weeks:
  1. A diet containing 38% fat: 16% saturated (SFA), 12% monounsaturated (MUFA) and 6% polyunsaturated (PUFA)
  2. A diet containing 38% fat: 8% SFA, 20% MUFA and 6% PUFA
  3. A diet high in unrefined carbohydrate, containing 28% fat (8% SFA, 11% MUFA and 6% PUFA)
  4. A diet high in unrefined carbohydrate, containing 28% fat (8% SFA, 11% MUFA and 6% PUFA) and an omega-3 supplement (1.24 g/day EPA and DHA)
After 12 weeks, insulin sensitivity, fasting glucose, glucose tolerance, and blood pressure did not change significantly in any of the four groups. This is consistent with the majority of the studies that have examined this question, although somehow the idea persists that saturated fat impairs insulin sensitivity. I discussed this in more detail in a recent post (2).

The paper that's typically cited by people who wish to defend the idea that saturated fat impairs insulin sensitivity is the KANWU study (3). In this study, investigators found no significant difference in insulin sensitivity between volunteers fed primarily SFA or MUFA for 12 weeks. You wouldn't realize this from the abstract however; you have to look very closely at the p-values in table 4.

One of the questions one could legitimately ask, however, is whether SFA have a different effect on people with metabolic syndrome. Maybe the inflammation and metabolic problems they already have make them more sensitive to the hypothetical damaging effects of SFA? That's the question the first study addressed, and it appears that SFA are not uniquely harmful to insulin signaling in those with metabolic syndrome on the timescale tested.

It also showed that the different diets did not alter the proportion of blood fats being burned in muscle, as opposed to being stored in fat tissue. The human body is a remarkably adaptable biological machine that can make the best of a variety of nutrient inputs, at least over the course of 12 weeks. Metabolic damage takes decades to accumulate, and in my opinion is more dependent on food quality than macronutrient composition. Once metabolic dysfunction is established, some people may benefit from carbohydrate restriction, however.